Research Articles

Publications 2023
  • Giulia Mancardi, Alicja Mikolajczyk, Vigneshwari K. Annapoorani, Aileen Bahl, Kostas Blekos, Jaanus Burk, Yarkın A. Çetin, Konstantinos Chairetakis, Sutapa Dutta, Laura Escorihuela, Karolina Jagiello, Ankush Singhal, Rianne van der Pol, Miguel A. Bañares, Nicolae-Viorel Buchete, Monica Calatayud, Verónica I. Dumit, Davide Gardini, Nina Jeliazkova, Andrea Haase, Effie Marcoulaki, Benjamí Martorell, Tomasz Puzyn, G.J. Agur Sevink, Felice C. Simeone, Kaido Tämm, Eliodoro Chiavazzo (2023): A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability. Materials Today.
  • Sengottiyan S., Mikołajczyk A., Jagiełło K., Swirog M., Puzyn T. (2023): Core, Coating, or Corona? The Importance of Considering Protein Coronas in nano-QSPR Modeling of Zeta Potential. ACS Nano, 17, 3, 1989–1997. IF [5 years] = 18.022, MEiN = 200, link

  • Sengottiyan S., Mikołajczyk A., Puzyn T. (2023): How Does the Study MD of pH-Dependent Exposure of Nanoparticles Affect Cellular Uptake of Anticancer Drugs? International Journal of Molecular Sciences, 24(4), 3479. IF [5 years] = 6.628, MEiN = 140, link

  • Kowalska D., Sosnowska A., Bulawska N., Stępnik M., Besselink H., Behnisch P., & Puzyn T. (2023): How the structure of per- and polyfluoroalkyl substances (PFAS) influences their binding potency to the peroxisome proliferator-activated and thyroid hormone receptors - an in silico screening study. Molecules, 28, 1–24. IF [5 years] = 5.110, MEiN =140, link

  • Sosnowska A., Buławska N., Kowalska D., & Puzyn T. (2023): Towards higher scientific validity and regulatory acceptance of predictive models for PFAS. Green Chemistry, 25, 1261–1275. IF [5 years] = 9.905, MEiN = 200, link

  • Mikołajczyk A., Zhdan U., Antoniotti S., Smolinski A., Jagiełło K., Skurski P., Harb M., Puzyn T., & Polański J. (2023): Retrosynthesis from transforms to predictive sustainable chemistry and nanotechnology: a brief tutorial review. Green Chemistry, 1–21. IF [5 years] = 9.905, MEiN = 200, link

  • Del Giudice G., Serra A., Saarimäki L. A., Kotsis K., Rouse I., Colibaba S. A., ... & Greco D. (2023): An ancestral molecular response to nanomaterial particulates. Nature Nanotechnology, 1-10. IF [5 years] = 40.523, MEiN = 200, link

  • Kozlowska, L., Jagiello, K., Ciura, K., Sosnowska, A., Zwiech, R., Zbrog, Z., Wasowicz, W., and Gromadzinska, J. (2023): The Effects of Two Kinds of Dietary Interventions on Serum Metabolic Profiles in Haemodialysis Patients. Biomolecules 13, no. 5: 854. IF [5 years] = 6.191, MEiN = 100; link

  • Sosnowska, A., Mudlaff, M., Gorb, L., Bulawska, N., Zdybel, S., Bakker, M., ... & Puzyn, T. (2023). Expanding the applicability domain of QSPRs for predicting water solubility and vapor pressure of PFAS. Chemosphere, 340, 139965. IF [5 years] = 8.300, MEiN = 140, link 
  • Ciura, K., Moschini, E., Stępnik, M., Serchi, T., Gutleb, A., Jarzyńska, K., ... & Puzyn, T. (2023). Toward Nano‐Specific In Silico NAMs: How to Adjust Nano‐QSAR to the Recent Advancements of Nanotoxicology?. Small, 2305581. IF [5 years] = 9.800, MEiN = 200, link
  • Furxhi, I., Kalapus, M., Costa, A., & Puzyn, T. (2023). Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections. Nanotoxicology, 1-16. IF [5 years] = 5.200, MEiN = 140, link
  • Falkiewicz, K., Fryca, I., Ciura, K., Mikolajczyk, A., Jagiello, K., & Puzyn, T. (2023). A bibliometric analysis of the recent achievements in pulmonary safety of nanoparticles. Nanotoxicology, 1-15. IF [5 years] = 5.200, MEiN = 140, link
Publications 2022
  • Kathiravan A., Sengottiyan S., Puzyn T., Pushparathinam G., Susila P. A. & Jhonsi M. A. (2022): Rapid Colorimetric Discrimination of Cyanide Ions–Mechanistic Insights and Applications. Analytical Methods. 2022, 14, 518-525. IF = 2.896, MEiN = 70, link

  • Chatterjee Mainak, Banerjee Arkaprava, De Priyanka, Gajewicz-Skrętna Agnieszka, Roy Kunal (2022): A novel quantitative read-across tool designed purposefully to fill the existing gaps in nanosafety data. Environmental Science-Nano, vol. 9, nr 1, s.189-203. IF = 8.131, MEiN = 140, link
  • Jagiełło K., Judzinska B., Sosnowska A., Lynch I., Halappanavar S. & Puzyn T. (2022): Using AOP-Wiki to support the ecotoxicological risk assessment of nanomaterials: first steps in the development of novel Adverse Outcome Pathways. Environmental Science: Nano,
    DOI: 10.1039/d1en01127h. IF = 8.131, MEiN = 140, link

  • Kozłowska L., Santonen T., Duca R.C., Godderis L., Jagiełło K., Janasik B., Van Nieuwenhuyse A., Poels K., Puzyn T., Scheepers P.T.J., Sijko M., Silva M.J., Sosnowska A., Viegas S., Verdonck J. W±sowicz W. (2022): HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites, 12, 362. IF = 4.932, MEiN = 100, link

  • Jagiello Karolina and Ciura Krzesimir (2022): In vitro to in vivo extrapolation to support the development of the next generation risk assessment (NGRA) strategy for nanomaterials. Nanoscale. DOI: 10.1039/d2nr00664b; IF = 7.790, MEiN = 140, link

  • Gromelski Maciej, Stolinski Filip, Jagiello Karolina, Rybińska-Fryca Anna, Williams Andrew, Halappanavar Sabina, Vogel Ulla, Puzyn Tomasz (2022): AOP173 key event associated pathway predictor – online application for the prediction of benchmark dose lower bound (BMDLs) of a transcriptomic pathway involved in MWCNTs-induced lung fibrosis. Nanotoxicology. doi.org/10.1080/17435390.2022.2064250; IF = 6.612, MEiN = 140, link 

  • Selvaraj Sengottiyan, Kakoli Malakar, Arunkumar Kathiravan, Marappan Velusamy, Alicja Mikolajczyk and Tomasz Puzyn (2022): Integrated Approach to Interaction Studies of Pyrene Derivatives with Bovine Serum Albumin: Insights from Theory and Experiment. The Journal of Physical Chemistry B, 2022, https://doi.org/10.1021/acs.jpcb.2c00778;  IF = 2.991, MEiN = 140, link

  • Ewelina Wyrzykowska, Alicja Mikolajczyk, Iseult Lynch, Nina Jeliazkova, Nikolay Kochev, Haralambos Sarimveis, Philip Doganis, Pantelis Karatzas, Antreas Afantitis, Georgia Melagraki, Angela Serra, Dario Greco, Julia Subbotina, Vladimir Lobaskin, Miguel A. Bañares, Eugenia Valsami-Jones, Karolina Jagiello & Tomasz Puzyn (2022): Representing and describing nanomaterials in predictive nanoinformatics. Nature Nanotechnology, 1-9. IF = 42.230, MEiN = 200, link

Publications 2021
  • Thwala M. M., Afantitis A., Papadiamantis A. G., Tsoumanis A., Melagraki G., Dlamini L. N., Ouma C.N.M, Ramasami P., Harris R., Puzyn T., Sanabria N., Lynch I, Gulumian M. (2021): Using the Isalos platform to develop a (Q) SAR model that predicts metal oxide toxicity utilizing facet-based electronic, image analysis-based, and periodic table derived properties as descriptors. Structural Chemistry, 1-12. (OA); IF [2020] = 1.887; IF [5 years] = 1.494; MNISW = 40, link

  • Michalska-Ciechanowska A., Hendrysiak A., Brzezowska J., Wojdyło A. & Gajewicz-Skretna A. (2021): How Do the Different Types of Carrier and Drying Techniques Affect the Changes in Physico-Chemical Properties of Powders from Chokeberry Pomace Extracts?. Foods, 10(8), 1864. IF [2020] = 4.35, IF [5 years] = 4.957, MNiSW = 100, link

  • Gulumian M., Andraos Ch., Afantitis A., Puzyn T., Coville N.J. (2021): Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? International Journal of Molecular Sciences, 22(15), 8347.
    IF [2020] = 5.923, IF [5 years] = 6.132, MNiSW = 140, link

  • Sizochenko N., Mikolajczyk A., Syzochenko M., Puzyn T., Leszczynski J. (2021): Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 22, 100317. IF [2020] = 5.316, IF [5 years] = 6.305, MNiSW = 100, link

  • Rudnicki-Velasquez P. B., Storoniak H., Jagiełło K., Kreczko–Kurzawa J., Jankowska M., Krzymiński K. J. (2021): Comparative studies on vitamin B1 deficiency in whole blood of chronically haemodialysed patients: chromatographic, fluorimetric and PCA study. Journal of Chromatography B, 1180, 122880. IF [2019] = 3.004, IF [5 years] = 2.841, MNiSW = 70, link

  • Jagiello, K., Halappanavar, S., Rybińska-Fryca, A., Williams, A., Vogel, U., Puzyn, T. (2021): Transcriptomics-based and AOP-informed structure-activity relationships to predict pulmonary pathology induced by multiwalled carbon nanotubes”. Small, Doi: 10.1002/smll.202003465. IF [2019] = 11.459; IF [5 years] = 10.611; MNISW = 200, link

  • Gajewicz‐Skretna A., Kar S., Piotrowska M., Leszczynski J. (2021): The kernel‐weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models. Journal of Cheminformatics 13:9. https://doi.org/10.1186/s13321‐021‐00484‐5. IF [2019] = 5,326; IF [5 years] = 5,687; MNISW = 100, link

  • Mazierski P., Roy J.K., Mikolajczyk A., Wyrzykowska E., Grzyb T., Caicedoa P.N.A., Weib Z., Kowalska E., Zaleska-Medynska A., Nadolna J.(2021): Systematic and detailed examination of NaYF4-Er-Yb-TiO2 photocatalytic activity under Vis–NIR irradiation: Experimental and theoretical analyses. Applied Surface Science, 536, 147805. IF [2019] = 6.182, IF [5 years] = 5.141, MNiSW = 140, link 
  • Sizochenko N., Mikolajczyk A., Syzochenko M., Puzyn T., Leszczynski J. (2021): Zeta potentials (ζ) of metal oxide nanoparticles: A meta-analysis of experimental data and a predictive neural networks modeling. NanoImpact, 22, 100317, ISSN 2452-0748. IF[2019] = 5.478, IF[5 years] = 5.533, MNiSW = 100, link

  • Gajewicz-Skretna A., Furuhama A., Yamamoto H., Suzuki N. (2021): Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Chemosphere, 280, 130681.  IF [2019] = 5.778, IF [5 years] = 5.705, MNiSW = 100, link

  • Murugadoss S., Vinković Vrček I., Pem B., Jagiello K., Judzinska B., Sosnowska A., Martens M., Willighagen E.L., Puzyn T., Dusinska M., Cimpan M.R., Fessard V. and Hoet P.H. (2021): A Strategy Towards the Generation of Testable Adverse Outcome Pathways for Nanomaterials.
    ALTEX 38(#), ###-###. doi:10.14573/altex.2102191, link

  • Lewandowski, Ł.; Gajewicz-Skretna, A.; Klimczuk, T.; Trykowski, G.; Nikiforow, K.; Lisowski, W.; Goł±biewska, A.; Zaleska-Medynska, A. (2021): Towards Computer-Aided Graphene Covered TiO2-Cu/(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution. Catalysts, 11, 698. https://doi.org/10.3390/catal11060698, link

  • Jeliazkova N., Apostolova M. D., Andreoli C., Barone F., Barrick A., Battistelli C., Bossa C., Botea-Petcu a., Chatel A., De Angelis I., Dusinska M., El Yamani N., Gheorghe D., Giusti A., Gomez-Fernandez P., Grafstrom R., Gromelski M., Jacobsen N.R., Jeliazkov V., Jensen K.a., Kochev N., Kohonen P., Manier N., Mariussen E., Mech A., Navas J.M., Paskaleva V., Precupas A., Puzyn T., Rasmussen K., Ritchie P., Rodriguez Llopis I., Runden-Pran E., Sandu R., Shandilya N., Tanasescu S., Haase A. & Nymark, P. (2021): Towards FAIR nanosafety data. Nature Nanotechnology, 1-11. IF [2019] = 31.538, IF [5 years] = 40.301, MNiSW = 200, link

Publications 2020
  • Afantitis A., Melagraki G., Isigonis P., Tsoumanis A., Varsou D.D., Valsami-Jones E., Papadiamantis A., Ellis L-J.A., Sarimveis H., Doganis P., Karatzas P., Tsiros P., Liampa I., Lobaskin V., Greco D., Serra A., Kinaret P.A.S., Saarimäki L.A., Grafström R., Kohonen P., Nymark P., Willighagen E., Puzyn T., Rybinska-Fryca A., Lyubartsev A., Jensen K.A., Brandenburg J.G., Lofts S., Svendsen C., Harrison S., Maier D., Tamm K., Jänes J., Sikk J., Dusinska M., Longhin E., Rundén-Pran E., Mariussen E., El Yamani N., Unger W., Radnik J., Tropsha A., Cohen Y., Leszczynski J., Hendren Ch.O., Wiesner M., Winkler D., Suzuki N., Yoon T.H., Choi J-S., Sanabria N., Gulumian M., Lynch I. (2020): NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 18, 583-602. IF [2018] = 4.72, MNiSW = 10, link 

  • Serra A., Fratello M., Cattelani L., Liampa I., Melagraki G., Kohonen P., Nymark P., Federico A., Kinaret P.A.S. , Jagiello K., Kieu M., Choi J-S., Sanabria N., Gulumian M., Puzyn T., Yoon T-H., Sarimveis H., Grafström R., Afantitis A., Greco D. (2020): Transcriptomics in Toxicogenomics, Part III: Data Modelling for Risk Assessment. Nanomaterials, 10, 708. IF [2018] = 4.034, IF [5 years] = 4.358, MNiSW = 70, link

  • Kinaret P.A.S., Serra A., Federico A., Kohonen P., Nymark P., Liampa I., Kieu M., Choi J-S.,  Jagiello K., Sanabria N., Melagraki G., Cattelani L., Fratello M., Sarimveis H., Afantitis A., Yoon T-H., Gulumian M., Grafström R., Puzyn T., Greco D. (2020): Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects. Nanomaterials, 10, 4. IF [2018] = 4.034, IF [5 years] = 4.358, MNiSW = 70, link

  • Federico A., Serra A., Kieu Ha M., Kohonen P., Choi J-S., Liampa I., Nymark P., Sanabria N., Cattelani L., Fratello M., Kinaret P., A., S., Jagiello K., Puzyn T., Melagraki G., Gulumian M., Afantitis A., Sarimveis H., Yoon T-H., Grafström R., Greco D. (2020): Transcriptomics in Toxicogenomics, Part II: Preprocessing and Differential Expression Analysis for High Quality Data. Nanomaterials,10, 903. IF [2018] = 4.034, IF [5 years] = 4.358, MNiSW = 70, link

  • Rybinska-Fryca A., Mikolajczyk A., Luczak J., Paszkiewicz-Gawron M., Paszkiewicz M., Zaleska-Medynska A., Puzyn T. (2020): How thermal stability of ionic liquids leads to more efficient TiO2-based nanophotocatalysts: Theoretical and experimental studies. Journal of Colloid and Interface Science, 572, 396-407. IF [2018] = 6.361, IF [5 years] = 5.078, MNiSW = 100, link

  • Rybinska-Fryca A., Sosnowska A., Puzyn T. (2020): Representation of the Structure – A Key Point of Building QSR/QSPR Models for Ionic Liquids. Materials 2020, 13(11), 2500. IF [2018] = 2.972, IF [5 years] = 3.532, MNiSW = 140, link

  • Sosnowska A., Laux E., Keppner H., Puzyn T., Bobrowski M. (2020): Relatively high-Seebeck thermoelectric cells containing ionic liquids supplemented by cobalt redox couple. Journal of Molecular Liquids 2020, 316(10), 113871. IF [2019]= 5.065, IF [5 years] = 4.766, MNiSW = 100, link

  • Isigonis, P., Afantitis, A., Antunes, D., Bartonova, A., Beitollahi, A., Bohmer, N., ... & Doak, S. (2020). Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials. Small, 2003303. IF [2019] = 11.459, IF [5 years] = 10.611, MNiSW = 200, link

  • Rybińska-Fryca A., Mikołajczyk A., Puzyn T. (2020): Structure–activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale, IF [2019] = 6.895, IF [5 years] = 7.315, MNiSW = 140, link

  • Michalska-Ciechanowska A., Brzezowska J., Wojdyło A., Gajewicz-Skretna A., Ciska E., Majerska J. (2020): Chemometric contribution for deeper understanding of thermally-induced changes of polyphenolics and the formation of hydroxymethyl-L-furfural in chokeberry powders. Food Chemistry, IF [2019] = 6,306, IF [5 years] = 6,219, MNiSW = 200, link
  • Malankowska A., Mikołajczyk A., Mędrzycka J., Wysocka I., Nowaczyk G., Jarek M., Puzyn T., Mulkiewicz E. (2020): The effect of Ag, Au, Pt and Pd on the surface properties, photoatalytic activity and toxicity of multicomponent TiO2-based nanomaterials. Environmental Science Nano, 7, 3557. IF [2019]: 7.683, IF [5 years] = 7.913, MNiSW = 140, link

  • Miodyńska M., Mikołajczyk A., Bajorowicz B., Zwara J., Klimczuk T., Lisowski W., Trykowski G., Pinto H. P., Zaleska-Medynska A.: (2020) Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance. Applied Catalysis B: Environmental, 272 (2020), 118962. IF [16.683], IF [5 years] = 14.443, MNiSW = 200, link 

  • Parnicka P., Mikołajczyk A., Pinto H. P., Lisowski W., Klimczuk T., Trykowski G., Bajorowicz B., Zaleska-Medyńska A. (2020): Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6. Applied Surface Science, 525 (2020) 146596. IF [2019] = 6.182, IF [5 years] = 5.141, MNiSW = 140, link

  • Mazierski P., Mikołajczyk A., Grzyb T., Caicedo P. N. A., Wei Z., Kowalska E., Pinto H. P., Zaleska-Medynska A., Nadolna J. (2020): On the excitation mechanism of visible responsible Er-TiO2 system proved by experimental and theoretical investigations for boosting photocatalytic aktivity. Applied Surface Science 527 (2020) 146815. IF [2019] = 6.182, IF [5 years] = 5.141, MNiSW = 140, link

  • Bajorowicz B., Mikolajczyk A., Pinto H.P., Miodynska M., Lisowski W., Klimczuk T., Kaplan-Ashiri I., Kazes M., Oron D., Zaleska-Medynska A. (2020): Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites. Journal of Physical Chemistry C, 124, 49, 26769–26779. IF [2019] = 4.189, IF [5 years] = 4.404, MNiSW = 140, link 

Publications 2019
  • Giusti A., Atluri R., Tsekovska R., Gajewicz A., Apostolova M. D., Battistelli C. L., Bleeker A. J., Bossa C., Bouillard J., Dusinska M., Gómez-Fernández, P., Grafström R., Gromelski M., Handzhiyski Y., Jacobsen N. R., Jantunenm P., Jensen K. A., Mech A., Navas H. M., Nymark P., Oomen A. G., Puzyn T., Rasmussen K., Riebeling C., Rodriguez-Llopis I., Sabella S., Sintes J. R., Suarez-Merino B., Tanasescu S., Wallin H., Haase A (2019): Nanomaterial grouping: Existing approaches and future recommendations. NanoImpact (16), 100182. IF[2018]=5.52, MNiSW=70, link

  • Ambure P., Gajewicz-Skretna A., Cordeiro M. N. D., & Roy K. (2019): New Workflow for QSAR Model Development from Small Data Sets: Small Dataset Curator and Small Dataset Modeler. Integration of Data Curation, Exhaustive Double Cross-Validation, and a Set of Optimal Model Selection Techniques. Journal of chemical information and modeling, 59(10), 4070-4076. IF [2018] = 3.966, IF [5 years] = 4.297, MNiSW = 100, link

  • Sosnowska A., Brzeski J., Skurski P., Puzyn T. (2019): The Acid Strength of the Lewis‐Brønsted Superacids – A QSPR Study. Molecular Informatics, vol. 38, nr 8-9, 2019, pp 1-9. IF [2018] = 2.375, IF [5 years] = 1.895, MNiSW = 70, link

  • Mazierski P., Caicedo P.N.A., Grzyb T., Mikołajczyk A., Roy J.K., Wyrzykowska E., Wei Z., Kowalska E., Puzyn T., Zaleska-Medynska A., Nadolna J. (2019): Experimental and computational study of Tm-doped TiO2: The effect of Li+ on Vis-respones photocatalysis and luminescence. Applied Catalysis B: Environmental, 252, 138-151. IF [2018] = 14.229, IF [5 years] = 12.176, MNiSW = 200, link

  • Acharya K., Werner D., Dolfing J., Barycki M., Meynet P., Mrozik W., Komolafe O., Puzyn T., Davenport R. (2019): A quantitative structure-biodegradation relationship (QSBR) approach to predict biodegradation rates of aromatic chemicals. Water Research, 157, 181-190. 
    IF [2018] =  7.913, IF [5 years] = 8.424, MNiSW = 140, link

  • Wyrzykowska E., Rybińska-Fryca A., Sosnowska A., Puzyn T. (2019): Virtual screening in the design of ionic liquids as environmentally safe bactericides. Green Chemistry, vol. 21, no. 8, 2019, ss. 1965-1973. IF [2018] = 9.405, IF [5 years] = 9.593, MNiSW = 200, link

  • Mikolajczyk, A., Sizochenko, N., Mulkiewicz, E., Malankowska, A., Rasulev, B., & Puzyn, T. (2019): A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective. Nanoscale, 11, 11808-11818. IF [2018] = 6.970, IF [5 years] = 7.592, MNiSW = 140, link

  • Jakubus A., Gromelski M., Jagiello K., Puzyn T., Stepnowski P., Paszkiewicz M. (2019): Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchemical Journal, 146, 258-269. IF [2018] = 3.206, IF [5 years] = 2.993, MNiSW = 70, link

  • Jakubus A., Godlewska K., Gromelski M., Jagiello K., Puzyn T., Stepnowski P., Paszkiewicz M. (2019): The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceuticals and their metabolites: Effect of extraction condition. Microchemical Journal, 146, 1113-1125. IF [2018] = 3.206, IF [5 years] = 2.993, MNiSW = 70, link

  • Baraba¶ A., Jagiełło K., Rybińska – Fryca A., D±browska A. M., Puzyn T. (2019): How the configurational changes influence on molecular characteristics. The alkyl 3-azido-2,3-dideoxy-D-hexopyranosides – Theoretical approach. Carbohydrate Research 481, 72-79. 
    IF [2018] = 1.873, IF [5 years] = 1.908, MNiSW = 70, link
  • Ambure P., Bhat J., Puzyn T. & Roy K. (2018/2019): Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: an in silico approach. Journal of Biomolecular Structure and Dynamics, 1-25. IF [2018] = 3.310, IF [5 years] = 2.689, MNiSW = 70, link

  • Blázquez M., Fernández-Cruz M. L., Gajewicz A., Puzyn T., & Benfenati E. (published: 2019): On the uses of predictive toxicology to approve the use of engineered nanomaterials as biocidal active substances under the Biocidal Products Regulation. In IOP Conference Series: Materials Science and Engineering (Vol. 499, No. 1, p. 012007). IOP Publishing. DOI: 10.1088/1757-899X/499/1/012007 (Proceedings Paper).
Publications 2018
  • Barycki M., Sosnowska A. & Puzyn T. (2018): AquaBoxIL–computational tool for determining the environmental distribution profile for ionic liquids. Green Chemistry, 2018, 20, 3359. IF [2018] = 9.405, IF [5 years] = 9.593, MNiSW = 45, link

  • Barycki M., Sosnowska A., Jagiello K., Puzyn T. (2018): Multi-Objective Genetic Algorithm (MOGA) As a Feature Selecting Strategy in the Development of Ionic Liquid’s Quantitative Toxicity – Toxicity Relationship Models. Journal of Chemical Information and Modeling, 58 (12), 2467-2476. IF [2018] = 3.966, IF [5 years] = 4.297, MNiSW = 40, link

  • Oberbek P., Bolek T., Chlanda A., Hirano S., Kusnieruk S., Rogowska-Tylman J., Nechyporenko G., Zinchenko V., Swieszkowski W., Puzyn T. (2018): Characterization and influence of hydroxyapatite nanopowders on living cells. Beilstein Journal of Nanotechnology, 9, 3079-3094.
    IF [2018] = 2.269, IF [5 years] = 3.025, MNiSW = 35, link

  • Stone, V., Führ, M., Feindt, P. H., Bouwmeester, H., Linkov, I., Sabella, S. & Fito, C. (2018): The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Analysis, vol. 38, nr 7, ss. 1321-1331. IF [2018] = 2.564, IF [5 years] = 3.161, MNiSW = 40, link

  • Gajewicz A., Puzyn T., Odziomek K., Urbaszek P., Haase A., Riebeling C. & Bouwmeester H. (2018): Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology, vol. 12, nr 1, ss. 1-17. IF [2018] = 5.955, IF [5 years] = 5.998, MNiSW = 45, link

  • Gajewicz, A. (2018): How to judge whether QSAR/read-across predictions can be trusted: a novel approach for establishing a model's applicability domain. Environmental Science: Nano, vol. 5, nr 2, ss. 408-421. IF [2018] = 7.704, IF [5 years] = 8.009, MNiSW = 40, link

  • Mikolajczyk A., Gajewicz A., Mulkiewicz E., Rasulev B., Marchelek M., Diak M., Hirano S., Zaleska-Medynska A & Puzyn T. (2018): Nano-QSAR modeling for ecosafe design of heterogeneous TiO 2-based nano-photocatalysts. Environmental Science: Nano, vol. 5, nr 5, ss. 1150-1160.
    IF [2018] = 7.704, IF [5 years] = 8.009, MNiSW = 40, link

  • Krukowska A., Trykowski G., Winiarski M. J., Klimczuk T., Lisowski W., Mikolajczyk A., Pinto H.P. & Zaleska-Medynska A. (2018): Mono- and bimetallic nanoparticles decorated KTaO3 photocatalysts with improved Vis and UV–vis light activity. Applied Surface Science, (441) 993-1011. IF [2018] = 5.155, IF [5 years] = 4.281, MNiSW = 35, link

  • Krukowska A., Winiarski M. J., Strychalska-Nowak J., Klimczuk T., Lisowski W., Mikolajczyk A., Pinto H.P., Puzyn T., Grzyb T. & Zaleska-Medynska A. (2018): Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV–vis light activity. Applied Catalysis B: Environmental, (224) 451-468. IF [2018] = 14.229, IF [5 years] = 12.176, MNiSW = 45, link

  • Sizochenko N., Mikolajczyk A., Jagiello K., Puzyn T., Leszczynski J. & Rasulev B. (2018): How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale, 10(2), 582-591.
    IF [2018] = 6.970, IF [5 years] = 7.592, MNiSW = 40, link

  • Rybińska-Fryca A., Sosnowska A., & Puzyn T. (2018): Prediction of dielectric constant of ionic liquids. Journal of Molecular Liquids, (260) 57-64.
    IF [2018] = 4.561, IF [5 years] = 4.136, MNiSW = 30, link
  • Jagiello K., Makurat S., Pereć S., Rak J. & Puzyn T. (2018): Molecular features of thymidine analogues governing the activity of human thymidine kinase. Structural Chemistry, vol. 29, nr 5, ss. 1367-1374. IF [2018] = 1.624, IF [5 years] = 1.333, MNiSW = 25, link

  • Puzyn T., Jeliazkova N., Sarimveis H., Robinson RLM., Lobaskin V., Rallo R., Richarz AN., Gajewicz A., Papadopulos MG., Hastings J., Cronin MTD., Benfenati E., Fernandez A. (2018): Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food and Chemical Toxicology, 112, 478-494. IF [2018] = 3.775, IF [5 years] = 4.248, MNiSW = 40, link

  • Mazierski P., Mikołajczyk A., Bajorowicz B., Malanowska A., Zaleska-Medynska A., Nadolna J. (2018): The role of lanthanides in TiO2-based photocatalysis: A review. Applied Catalysis B-Environmental, 233, 301-317. IF [2018] = 14.229, IF [5 years] = 12.176, MNiSW = 45, link

  • Kulthong K., Duivenvoorde L., Mizera B. Z., Rijkers D.,b ten Dam G., Oegema G., Puzyn T., Bouwmeester H., van der Zande M. (2018): Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Advances, 2018, 8, 32440. IF [2018] = 3.049, IF [5 years] = 3.168, MNiSW = 35, link

  • Judycka U., Jagiello K., Gromelski M., Bober L., Błażejowski J., Puzyn T. (2018): Chemometric outlook on correlations between retention parameters of polar and semi-polar HPLC columns and physicochemical characteristics of ampholytic substances of biological and pharmaceutical relevance. Structural Chemistry, 2018. IF [2018] = 1.624, IF [5 years] = 1.333, MNiSW = 25, link

  • Judycka U., Jagiello K., Gromelski M., Bober L., Błażejowski J., Puzyn T. (2018): Chemometric approach to correlations between retention parameters of non-polar HPLC columns and physicochemical characteristics for ampholytic substances of biological and pharmaceutical relevance. Journal of Chematography B, 2018, 1095, 8-14. IF [2018] = 2.813, IF [5 years] = 2.751, MNiSW = 30, link

  • Judycka U., Jagiello K., Bober L., Błażejowski J., Puzyn T. (2018): Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools. Chemical Physics Letters, 2018, 701, 58-64.
    IF [2018] = 1.901, IF [5 years] = 1.696, MNiSW = 30, link

  • Sizochenko N., Gajewicz A., Leszczyński J., Puzyn T. (2018): Reply to the comment on „Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models“ by D.A. Tasi, J. Csontos, B. Nagy, Z. Kónya and G. Tasi. Nanoscale, 2018, 10, C8NR02377H. Nanoscale, 2018. IF [2018] = 6.970, IF [5 years] = 7.592, MNiSW = 40, link

Publications 2017
  • Rybińska A., Sosnowska A., Grzonkowska M., Barycki M., Puzyn T. (2017): Comment on „Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient”. Journal of Hazardous Materials, vol. 329, 2017, pp 351-352. [IF2018 = 7.65, IF5 years = 7.336, MNiSW = 200] link

  • Gajewicz A., Jagiello K., Cronin M. T. D., Leszczynski J., Puzyn, T. (2017): Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environmental Science: Nano, 4, 346-358. [IF 2015 = 5.896, IF5 years = 5.896, MNiSW = 40] link

  • Jagiello K., Sosnowska A., Kar S., Demkowicz S., Da¶ko M., Leszczynski J., Rachon J. and Puzyn, T. (2017): Geometry optimization of steroid sulfatase inhibitors-the influence on the free binding energy with STS. Structural Chemistry, pp.1-16. [IF2015 = 1.854, IF5 years = 1.566, MNiSW = 25] link

  • Mazierski P., Lisowski W., Grzyb T., Winiarski M.J., Klimczuk T., Mikołajczyk A., Flisikowski J., Hirsch A., Kołakowska A., Puzyn, T. and Zaleska-Medynska A. (2017): Enhanced photocatalytic properties of lanthanide-TiO 2 nanotubes: An experimental and theoretical study. Applied Catalysis B: Environmental, 205, pp.376-385. IF2015 = 8.328, IF5 years = 8.142, MNiSW = 45] link

  • Barycki M., Sosnowska A., Puzyn T. (2017): Which structural features stand behind micelization of ionic liquids? Quantitative Structure-Property Relationship studies. Journal of Colloid and Interface Science, 487, 475-483 [IF2015 = 3.782, IF5 years = 3.758, MNiSW = 30] link

  • Sizochenko N., Syzochenko M., Gajewicz A., Leszczynski J. and Puzyn T. (2017): Predicting Physical Properties of Nanofluids by Computational Modeling. Journal of Physical Chemistry C, 121, 1910-1917. [IF2015 = 4.509, IF5 years = 4.919, MNiSW = 35] link

  • Urbaszek P., Gajewicz A., Sikorska C., Haranczyk M., & Puzyn T. (2017): Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR. Beilstein Journal of Nanotechnology, 8(1), 752-761. [IF2015 = 2.778, IF5 years = 2.977, MNiSW = 35] link

  • Kotłowska, A., Puzyn, T., Sworczak, K., Stepnowski, P., & Szefer, P. (2017). Metabolomic Biomarkers in Urine of Cushing’s Syndrome Patients. International Journal of Molecular Sciences, 18(2), 294. [IF2015 = 3.257, IF5 years = 3.213, MNiSW = 30] link

  • Fjodorova N., Novic M., Gajewicz A. & Rasulev B. (2017): The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Nanotoxicology, (just-accepted), 1-28. [IF2015 = 7.913, IF5 years = 8.137, MNiSW = 45] link

  • Odziomek K., Ushizima D., Oberbek P., Kurzydłowski K. J., Puzyn T. & Haranczyk M. (2017): Scanning electron microscopy image representativeness: morphological data on nanoparticles. Journal of microscopy, 265(1), 34-50. [IF2015 = 2.136, IF5 years = 2.034, MNiSW = 35] link 

  • Sosnowska A., Grzonkowska M. & Puzyn T. (2017): Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: The predictive ability. Journal of Molecular Liquids, 231, 333-340. [IF2015 = 2.740, IF5 years = 2.439, MNiSW = 30] link

  • Giełdoń A., Witt M. M., Gajewicz A., & Puzyn T. (2017): Rapid insight into C60 influence on biological functions of proteins. Structural Chemistry, 1-14. [IF2015 = 1.854, IF5 years = 1.566, MNiSW = 25] link

  • Jagiello K., Chomicz B., Avramopoulos A., Gajewicz A., Mikolajczyk A., Bonifassi P., Papadopoulos M.G., Leszczynski J. and Puzyn, T. (2017): Size-dependent electronic properties of nanomaterials: How this novel class of nanodescriptors supposed to be calculated? Structural Chemistry, 1-9. IF [2015] = 1.854, IF [5 years] = 1.566, MNiSW = 25

  • Gajewicz A. (2017): Development of valuable predictive read-across models based on “real-life” (sparse) nanotoxicity data. Environmental Science: Nano, 2017, 4, 1389-1403. [IF2015 = 5.896, IF5 years = 5.896, MNiSW = 40] link

  • Gajewicz, A. (2017): What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale, 2017, 9, 8435-8448. [IF2016 = 7.367, IF5 years = 7.668, MNiSW = 40] link

  • Bañares M. A., Haase A., Tran L., Lobaskin V., Oberdörster G., Rallo R., Leszczynski J., Hoet P., Korenstein R., Hardy B. & Puzyn T. (2017): CompNanoTox2015: novel perspectives from a European conference on computational nanotoxicology on predictive nanotoxicology. Nanotoxicology, 1-7. [IF 2016 = 6.428, IF5 years = 6.327, MNiSW = 45] link

  • Mikolajczyk A., Sizochenko N., Mulkiewicz E., Malankowska A., Nischk M., Jurczak P., ... & Gajewicz A. (2017): Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach. Beilstein Journal of Nanotechnology, 8(1), 2171-2180. [IF 2016 = 3.127, IF5 years = 3.070, MNiSW = 30] link

  • Jagiello, K., Sosnowska, A., Mikolajczyk, A., & Puzyn, T. (2017): Nanomaterials in Medical Devices: Regulations' Review and Future Perspectives. Journal of Nanotoxicology and Nanomedicine (JNN), 2(2), 1-11. link
Publications 2016
  • Jagiello K., Chomicz B., Avramopoukos A., Gajewicz A., Mikolajczyk A., Bonifassi P., Papadopoulos M.G., Leszczynski J., Puzyn T. (2016): Size-dependent electronic properties of nanomaterials: How this novel class of nanodescriptors supposed to be calculated? Structural Chemistry, 1-9, DOI: 10.1007/s11224-016-0838-2. [IF2015 = 1.854; IF5years = 1.566; MNiSW2015 = 25] link

  • Jagiello K., Grzonkowska M., Swirog M., Ahmed L., Rasulev B., Avramopoulos A., Papadopoulos M. G., Leszczynski J., Puzyn T. (2016): Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives. Journal of Nanoparticle Research 18, First OnLine DOI: 10.1007/s11051-016-3564-1. [IF2015 = 2.101; IF5years = 2.499; MNiSW2015 = 30] link

  • Mikolajczyk A., Malankowska A., Nowaczyk G., Gajewicz A., Hirano S., Jurga S.,   Zaleska-Medynska A., Puzyn T. (2016): Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd–TiO2 nanoparticles. Environmental Science: Nano, 3, 1425-1435. [IF2015 = 5.896; IF5years = 5.896; MNiSW2015 = 40] link

  • Wyrzykowska E., Mikolajczyk A., Sikorska C., Puzyn T.  (2016): Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach. Nanotechnology 27, 445702. [IF2015 = 3.573; IF5years = 3.611; MNiSW2015 = 35] link

  • Sosnowska A., Barycki M., Gajewicz A., Bobrowski M., Freza S., Skurski P., Uhl S., Laux E., Journot T., Jeandupeux L., Keppner H., Puzyn T. (2016): Towards the Application of Structure-Property Relationship Modeling in Materials Science: Predicting the Seebeck Coefficient for Ionic Liquid/Redox Couple Systems. ChemPhysChem 17, 1591-1600. [IF2015 = 3.138; IF5years = 3.130; MNiSW2015 = 35] link

  • Sizochenko N., Gajewicz A., Leszczynski J., Puzyn T. (2016): Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Nanoscale 8, 7203-7208. [IF2015 = 7.760; IF5years = 7.915; MNiSW2015 = 40] link

  • Sikorska C., Gajewicz A., Urbaszek P., Lubinski L., Puzyn T. (2016): Efficient way of designing fullerene derivatives based on simplified DFT calculations and QSPR modeling. Chemometrics and Intelligent Laboratory Systems 152, 125-133. [IF2015 = 2.217; IF5years = 2.595; MNiSW2015 = 35] link

  • Rybinska A., Sosnowska A., Grzonkowska M., Barycki M., Puzyn T. (2016): Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient. Journal of Hazardous Materials 303, 137-144. [IF2015 = 4.836; IF5years = 5.641; MNiSW2015 = 45] link

  • Rybinska A., Sosnowska A., Barycki M., Puzyn T. (2016): Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids. Journal of Computer-Aided Molecular Design 30, 165-176. [IF2015 = 3.199; IF5years = 2.998; MNiSW2015 = 30] link

  • Robinson R. L. M., Lynch I., Peijnenburg W., Rumble J., Klaessig F., Marquardt C., Rauscher H., Puzyn T., Purian R., Aberg C., Karcher S., Vriens H., Hoet P., Hoover M. D., Hendren C. O., Harper S. L. (2016): How should the completeness and quality of curated nanomaterial data be evaluated? Nanoscale 8, 9919-9943. [IF2015 = 7.760; IF5years = 7.915; MNiSW2015 = 40] link

  • Kar S., Gajewicz A., Roy K., Leszczynski J., Puzyn T.  (2016): Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicology and Environmental Safety 126, 238-244. [IF2015 = 3.130; IF5years = 3.246; MNiSW2015 = 30] link

  • Grzonkowska M., Sosnowska A., Barycki M., Rybinska A., Puzyn T. (2016): How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere 159, 199-207. [IF2015 = 3.698; IF5years = 4.068; MNiSW2015 = 35] link

  • Barycki M., Sosnowska A., Piotrowska M., Urbaszek P., Rybinska A., Grzonkowska M., Puzyn T. (2016): ILPC: simple chemometric tool supporting the design of ionic liquids. Journal of Cheminformatics 8, 8-40. [IF2015 = 3.949; IF5years = 5.944; MNiSW2015 = 40] link

  • Barycki M., Sosnowska A., Gajewicz A., Bobrowski M., Wilenska D., Skurski P., Gieldon A., Czaplewski C., Uhl S., Laux E., Journot T., Jeandupeux L., Keppner H., Puzyn T. (2016): Temperature-dependent structure-property modeling of viscosity for ionic liquids. Fluid Phase Equilibria 427, 9-17. [IF2015 = 1.846; IF5years = 1.987; MNiSW2015 = 30] link

  • Cassano A., Marchese Robinson R.L., Palczewska A., Puzyn T., Gajewicz A., Tran L., Manganelli S., Cronin M.T.D. (2016): Comparing the CORAL and Random Forest Approaches for Modelling the In Vitro Cytotoxicity of Silica Nanomaterials. ATLA 44, 533-556, 2016. [IF2015 = 0.966; IF5years = 1.479; MNiSW2015 = 20] link

Publications 2015
  • Gajewicz A., Cronin M.T.D., Rasulev B., Leszczynski J., Puzyn T. (2015): Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Nanotechnology, 26 [IF2015 = 3.573; IF5years = 3.611; MNiSW2015 = 35] link
  • Judycka-Proma U., Bober L., Gajewicz A., Puzyn T., Blazejowski J. (2015): Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 138, 700-710 [IF2015 = 2.653; IF5years = 2.582; MNiSW2015 = 30] link
  • Richarz A-N., Madden J.C., Marchese Robinson Richard L., Lubiński Ł., Mokshina E., Urbaszek P., Kuz’min V.E., Puzyn T., Cronin M.T.D. (2015): Development of computational models for the prediction of the toxicity of nanomaterials. Perspectives in Science, 3, 27-29 link
  • Mikolajczyk A., Gajewicz A., Rasulev B., Schaeublin N., Maurer-Gardner E., Hussain S., Leszczynski J., Puzyn T. (2015): Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure-Property Relationship Approach. Chemistry of Materials, 27, 2400-2407 [F2015 = 9.407; IF5years = 9.363; MNiSW2015 = 45] link
  • Mikolajczyk A., Pinto H.P., Gajewicz A., Puzyn T., Leszczynski J. (2015): Ab Initio Studies of Anatase TiO2 (101) Surface-supported Au-8 Clusters. Current Topics in Medicinal Chemistry, 15, 1859-1867 [IF2015 = 2.900; IF5years = 2.998; MNiSW2015 = 35] link
  • Ambure P., Aher R. B., Gajewicz A., Puzyn T., Roy K. (2015): „NanoBRIDGES” software: Open access tools to perform QSAR and nano-QSAR modeling. Chemometrics and Intelligent Laboratory Systems, 147, 1-13 [IF2015 = 2.217; IF5years = 2.595; MNiSW2015 = 40] link
  • Jagiello K., Mostag-Szlichtyng A., Gajewicz A., Kawai T., Imaizumi Y., Sakurai T., Yamamoto H., Tatarazako N., Mizukawa K., Aoki Y., Suzuki N., Watanabe H., Puzyn T. (2015): Towards modelling of the environmental fate of pharmaceuticals using the QSAR-MM scheme. Environmental Modelling & Software, 72, 147-154 [IF2015 = 4.207; IF5years = 4.528; MNiSW2015 = 40] link
  • Sikorska C., Puzyn T. (2015): The performance of selected semi-emiprical and DFT methods in studying C60 fullerene derivatives. Nanotechnology, 26, 455702, doi:10.1088/0957-4484/26/45/455702 [IF2015 = 3.573; IF5years = 3.611; MNiSW2015 = 35] link
  • Sizochenko N., Rasulev B., Gajewicz A., Mokshyna E., Kuz’min V.E., Leszczynski J., Puzyn T. (2015): Causal interence methods to assist in mechanistic interpretation of classification nano-SAR models. The Royal Society of Chemistry, 5, 77739-77745 [IF2015 = 3.289; IF5years = 3.485; MNiSW2015 = 35] link
  • Sizochenko N., Jagiello K., Leszczynski J., Puzyn T. (2015): How the “Liquid Drop” Approach Could Be Efficiently Applied for Quantitative Structure-Property Relationship Modeling of Nanofluids. The Journal of Physical Chemistry C, 119, 25542-25547 [IF2015 = 4.509; IF5years = 4.919; MNiSW2015 = 35] link
  • Gajewicz A., Schaeublin N., Rasulev B., Hussain S., Leszczynska D., Puzyn T., Leszczynski J. (2015): Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies, Nanotoxicology, 9, 313-325 [IF2015 = 7.913; IF5years = 8.137; MNiSW2015 = 45] link

  • Tantra R., Oksel C., Puzyn T., Wang J., Robinson K. N., Wang X. Z., Ma C. Y., Wilkins T. (2015): Nano(Q)SAR: Challenges, pitfalls and perspectives. Nanotoxicology 9, 636-642. [IF2015 = 7.913; IF5years = 8.137; MNiSW2015 = 45] link

Publications 2014
  • Sosnowska A., Barycki M., Zaborowska M., Rybinska A., Puzyn T. (2014): Towards designing environmentally safe ionic liquids: the influence of the cation structure. Green Chemistry 16, 4749-4757 [IF2014 = 8.020; IF5years = 8.294; MNiSW2014 = 40] link

  • Sosnowska A., Barycki M., Jagiello K., Haranczyk M., Gajewicz A., Kawai T., Suzuki N., Puzyn T. (2014): Predicting enthalpy of vaporization for Persistent Organic Pollutants with Quantitative Structure-Property Relationship (QSPR) incorporating the influence of temperature on volatility. Atmospheric Environment 87, 10-18 [IF2014 = 3.281; IF5years = 3.780; MNiSW2014 = 35] link

  • Sizochenko N., Rasulev B., Gajewicz A., Kuz'min V., Puzyn T., Leszczynski J. (2014): From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale 6, 13986-13993 
    [IF2014 = 7.394; IF5years = 7.762; MNiSW2014 = 40] link

  • Kawai T., Jagiello K., Sosnowska A., Odziomek K., Gajewicz A., Handoh I. C., Puzyn T., Suzuki N. (2014): A New Metric for Long-Range Transport Potential of Chemicals. Environmental Science & Technology 48, 3245-3252 [IF2014 = 5.330; IF5years = 6.326; MNiSW2014 = 45] link

  • Kar S., Gajewicz A., Puzyn T., Roy K., Leszczynski J. (2014): Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicology and Environmntal Safety 107, 162-169 
    [IF2014 = 2.762; IF5years = 2.878; MNiSW2014 = 30] link

  • Kar S., Gajewicz A., Puzyn T., Roy K. (2014): Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicology in Vitro 28, 600-606 
    [IF2014 = 2.903; IF5years = 3.047; MNiSW2014 = 30] link

  • Jagiello K., Sosnowska A., Walker S., Haranczyk M., Gajewicz A., Kawai T., Suzuki N., Leszczynski J., Puzyn T. (2014): Direct QSPR: the most efficient way of predicting organic carbon/water partition coefficient (log KOC) for polyhalogenated POPs. Structural Chemistry 25, 997-1004 [IF2014 = 1.837; IF5years = 1.598; MNiSW2014 = 25] link

  • Golebiowski M., Sosnowska A., Puzyn T., Bogus M. I., Wieloch W., Wloka E., Stepnowski P. (2014): Application of Two-Way Hierarchical Cluster Analysis for the Identification of Similarities between the Individual Lipid Fractions of Lucilia sericata. Chemistry & Biodiversity 11, 733-748 
    [IF2014 = 1.515; IF5years = 1.686; MNiSW2014 = 25] link

  • Bielinska-Waz D., Waz P., Jagiello K., Puzyn T. (2014): Spectral density distribution moments as novel descriptors for QSAR/QSPR. Structural Chemistry 25, 29-35 [IF2014 = 1.837; IF5years = 1.596; MNiSW2014 = 25] link

Publications 2013
  • Toropova A. P., Toropov A. A., Puzyn T., Benfenati E., Leszczynska D., Leszczynski J. (2013): Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems. Journal of Mathematical Chemistry 51, 2230-2237 [IF2013 = 1.270; IF5years = 1.195; MNiSW2013 = 25; Cyt. = 8] 

  • Toropov A. A., Toropova A. P., Puzyn T., Benfenati E., Gini G., Leszczynska D., Leszczynski J. (2013): QSAR as a random event: Modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92, 31-37 [IF2013 = 3.137; IF5years = 3.634; MNiSW2013 = 40; Cyt. = 50] link

  • Odziomek K., Gajewicz A., Haranczyk M., Puzyn T. (2013): Reliability of environmental fate modeling results for POPs based on various methods of determining the air/water partition coefficient (log KAW). Atmospheric Environment 73, 177-184 
    [IF2013 = 3.110; IF5years = 3.787; MNiSW2013 = 40; Cyt. = 5] link

  • Lubinski L., Urbaszek P., Gajewicz A., Cronin M. T. D., Enoch S. J., Madden J. C., Leszczynska D., Leszczynski J., Puzyn T. (2013):
    Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling. SAR and QSAR
    in Environmental Research 24, 995-1008 [IF2013 = 1.667; IF5years = 1.702; MNiSW2013 = 25; Cyt. = 14] link

  • Bielinska-Waz D., Waz P., Clark T., Puzyn T., Peplowski L., Nowak W. (2013): Statistical properties of spectra of chloronaphthalenes.
    Journal of Mathematical Chemistry 51, 857-867 [IF2013 = 1.226; IF5years = 1.166; MNiSW2013 = 25; Cyt. = 4] link

Publications 2012
  • Toropov A. A., Toropova A. P., Benfenati E., Gini G., Puzyn T., Leszczynska D., Leszczynski J. (2012): Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere 89, 1098-1102 
    [IF2012 = 3.137; IF5years = 3.634; MNiSW2012 = 40] link

  • Skwarzec B., Kabat K., Puzyn T., Astel A. (2012): Inflow of polonium, uranium and plutonium radionuclides in Odra River catchment area assessment by environmetric expertise. Journal of Radioanalytical and Nuclear Chemistry 292, 519-529 
    [IF2012 = 1.467; IF5years = 1.110; MNiSW2012 = 20] link

  • Haranczyk M., Urbaszek P., Ng E. G., Puzyn T. (2012): Combinatorial x Computational x Cheminformatics (C-3) Approach to Characterization of Congeneric Libraries of Organic Pollutants. Journal of Chemical Information and Modeling 52, 2902-2909 
    [IF2012 = 4.304; IF5years = 4.067; MNiSW2012 = 40] link

  • Gajewicz A., Rasulev B., Dinadayalane T. C., Urbaszek P., Puzyn T., Leszczynska D., Leszczynski J. (2012): Advancing risk assessment of engineered nanomaterials: Application of computational approaches. Advanced Drug Delivery Reviews 64, 1663-1693 
    [IF2012 = 12.888; IF5years = 15.431; MNiSW2012 = 50] link

Publications 2011
  • Gajewicz A., Puzyn T., Rasulev B., Leszczynska D., Leszczynski J. (2011): Metal oxide nanoparticles: Size-dependence of quantum-mechanical properties. Nanosci. Nanotech. Asia 1, 53-58. [New journal; MNiSW = 2] link

  • Puzyn T., Haranczyk M., Suzuki N., Sakurai T. (2011): Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme. Molecular Diversity 15, 173-188
    [IF2011 = 3.153; IF5years = 3.236; MNiSW2011 = 40] link

  • Puzyn T, Gajewicz A, Rybacka A, Haranczyk M (2011): Global vs. local QSPR models for persistent organic pollutants: balancing between predictivity and economy. Struct. Chem. 22 (4), 795-804 [IF2011 = 1,846, IF 5 years = 1.392, MNiSW = 25; Open access] link

  • Puzyn T., Mostrag-Szlichtyng A., Gajewicz A., Skrzyński M. & Worth A. (2011): Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Structural Chemistry, 22(4), 873-884 [IF2011 = 1,846, IF5 years = lacking, MNiSW = 25, Open access]. link

  • Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T., Michalkova A., Hwang H-M., Toropov A., Leszczynska D. and Leszczynski J (2011): Using nano-QSAR to predict the CITtoxiCITy of metal oxide nanoparticles. Nature Nanotechnology, Nature Nanotechnlol. 6, 175-178
    [IF2011 = 27.270; IF5years = 33.781, MNiSW = 50] link

  • Puzyn T (2011): On the replacement of empirical parameters in multimedia mass balance models with QSPR data. J. Hazard. Mater. 192 (3), 970-977. [IF2011 = 4.173, IF 5 years = 4.553, MNiSW = 45] link

  • Gołębiowski M., Siedlecka E, Paszkiewicz M., Brzozowski K., Stepnowski P. (2011): Perfluorocarboxylic acids in cell growth media and technologically treated waters: Determination with GC and GC–MS. Journal of Pharmaceutical and Biomedical Analysis 54, 577–581. link

  • Gołębiowski M., Bogu¶ M.I., Paszkiewicz M. , Stepnowski P. (2011): Cuticular lipids of insects as a potential biofungicides: methods of lipids composition analysis. Anal. Bioanal. Chem. 399, 3177-3191. link

  • Haliński Ł. P, Paszkiewicz M., Gołębiowski M., Stepnowski P. (2011): The chemical composition of cuticular waxes from leaves of the gboma eggplant (Solanum macrocarpon L.). J. Food Compos. Anal. 25, 74-78. link

  • Gołębiowski M., Paszkiewicz M., Grubba A., G±siewska D., Bogu¶ M.I., Włóka E., Wieloch W., Stepnowski P. (2011): Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines; application of HPLC-LLSD and GC/MS-SIM. Bull. Entomol. Res. 102, 453-460. link

  •  

 

Publications 2010
  • Harańczyk. M, Puzyn T. and Esmond G. Ng (2010): On enumeration of congeners of common persistent organic pollutants. Environmental Pollution 158, 2786 – 2789 [IF2012 = 3.730; MNiSW = 32; CIT=2]. link
  • Puzyn T., Suzuki N., Sakurai T. (2010): Estimating persistence of brominated and chlorinated organic pollutants in air, water, soil, and sediments with the QSPR-based classification scheme. Mol. Divers. 15 (1), 173-188 [IF=2.861; MNiSW=32; CIT=4]. link
  • Gajewicz A., Haranczyk M., Puzyn T. (2010): Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated Persistent Organic Pollutants with QSPR: How different are chlorinated and brominated congeners? Atmos. Environ. 44 (11), 1428-1436 [IF = 2.890; MNiSW = 24; CIT=0]. link
  • Mostr±g A., Puzyn T., Haranczyk M. (2010): Modelling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds. Environ. Sci. Pollut. Res. 17 (2), 470-477 [IF = 2.492; MNiSW = 24; CIT=0]. link
  • Gołębiowski M., Maliński E., Szankin M., Marszeniuk M., Paszkiewicz M., Stepnowski P., (2010): Determination of catechin and epicatechin in the peel of apple varietes resistant and non – resistant to apple scab. Chemical Papers 64, 729 – 733. [IF=0.791, MNiSW = 20] link
  • Migowska N., Stepnowski P., Paszkiewicz M., Gołębiowski M., Kumirska J. (2010): Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non – steroidal anti – inflammatory drugs (NSAIDs) by gas chromatography methods. Anal. Bioanal. Chem. 397 (7), 3029-3034 [IF=3.480]. link
  • Bogu¶ M.I., Czygier M., Gołębiowski M., Kędra E., Kucińska J., Mazgajska J., Samborski J., Wieloch W., Włóka E. (2010): Effect of insect cuticular fatty acids affect in vitro growth and pathogeniCITy of entomopathogenic fungus Conidiobolus coronatus. Experimental Parasitology 125 (4), 400-408 [IF=1.773]. link
  • Mika A., Gołębiowski M., Szafranek J., Rokicki J., Stepnowski P. (2010): Identification of lipids in the cuticle of the parasitic nematode Anisakis simplex and the somatic tissues of the atlantic cod Gadus morhua. Experimental Parasitology 124, 334 – 340 [IF=1.773]. link
  • Gołębiowski M., Bogu¶ M.I., Paszkiewicz M., Stepnowski P. (2010): The composition of the free fatty acids from Dendrolimus pini exuviae. Journal of Insect Physiology 56, 391 – 397 [IF=2.235, MNiSW = 32]. link
Publications 2009
  • Puzyn, T., Leszczynska D., Leszczynski J. (2009): Towards the development of “Nano-QSARs”: Advances and challenges. Small 5 (22), 2494-2509 [IF = 6.525; MNiSW = 24; CIT=0]. link
  • Puzyn T., Mostr±g A., Falandysz J., Kholod Y., Leszczynski J. (2009): Predicting water solubility of congeners: Chloronaphthalenes a case study. J. Hazard. Mater. 170 (2-3) 1014-1022 [IF = 2.975; MNiSW = 24; CIT=1]. link
Publications 2008
  • Puzyn T., Suzuki N., Haranczyk M. (2008): How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced by bromine? Environ. Sci. Technol. 42 (14) 5189-5195. [IF = 4.458; MNiSW = 24; CIT = 5] link
  • Puzyn T., Suzuki N., Haranczyk M., Rak J. (2008): Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J. Chem. Inf. Model. 48 (6), 1174-1180. [IF = 3.643; MNiSW = 24; CIT = 10] link
  • Puzyn T., Mostr±g A., Suzuki N., Falandysz J. (2008): QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos. Environ. 42 (27) 6627-6636 [IF = 2.890; MNiSW = 24; CIT = 5] link
  • Haranczyk M., Puzyn T., Sadowski P. (2008): ConGENER – a tool for modeling of the congeneric sets of  environmental pollutants. QSAR Comb. Sci. 27 (7) 826-833. [IF = 2.594; MNiSW = 24; CIT = 3] link
Publications 2007
  • Puzyn T., Falandysz J. (2007): Application and comparison of different chemometric approaches in QSPR modeling of supercooled liquid vapour pressure. SAR and QSAR Environ. Res. 18 (3-4), 299-313. [IF = 2.238; MNiSW = 24; CIT = 4] link
  • Puzyn T., Falandysz J., Jones P. D., Giesy J. P. (2007): Quantitative structure – activity relationships for prediction of relative in vitro potencies (RePs) for chloronaphthalenes. J. Environ. Sci. Health A 42 (5), 573-590. [IF = 1.002; MNiSW = 15; CIT = 11] link
  • Puzyn T., Falandysz J. (2007): QSPR modeling of partition coefficients and Henry’s Law constants for 75 chloronphthalene congeners by means of six chemometrical approaches – a comparative study. J. Phys. Chem. Ref. Data 36 (1), 203-214. [IF = 2.424; MNiSW = 24; CIT = 6] link
  • Piliszek S., Wilczyńska-Piliszek A. J., Puzyn T., Falandysz J. (2007): Thermodynamical and quantum-chemical characterization and chemometrical selection of representative congeners of trans-chloroazoxybenzene. J. Environ. Sci. Health  A 42 (2), 135-142. [IF = 1.002; MNiSW = 15; CIT = 1] link
Publications 2006
  • Wilczyńska-Piliszek A. J., Puzyn T., Piliszek S., Falandysz J. (2006): Selection of representative congeners for polychlorinated trans-azobenzenes (PCt-ABs) based on comprehensive thermodynamical and quantum-chemical characterization. J. Environ. Sci. Health B 41 (7), 1131-1142. [IF = 0.930; MNiSW = 10; CIT = 0] link
  • Puzyn T., Rostkowski P., ¦wieczkowski A., Falandysz J. (2006): Prediction of environmental partition coefficients and the Henry’s law constants for 135 congeners of chlorodibenzotiophene (PCDTs). Chemosphere 62 (11), 1817-1828 [IF = 3.054; MNiSW = 24; CIT = 8] link
Publications 2005
  • Puzyn T., Falandysz J. (2005): Octanol-water partition coefficients of chloronaphtalenes. J. Environ. Sci. Health A 40 (9), 1651-1663. [IF = 1.002; MNiSW = 15; CIT = 3] link
  • Puzyn T., Falandysz J. (2005): Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled liquid vapour pressures of 75 chloronaphthalene congeners Atmos. Environ. 39 (8), 1439-1446. [IF = 2.890; MNiSW = 24; CIT = 11] link
Publications 2004
  • Hanari N., Horii Y., Okazawa T., Falandysz J., Bochentin I., Orlikowska A., Puzyn T., Wyrzykowska B., Yamashita N., (2004): Dioxin-like compounds in pine needles around the Tokyo Bay, Japan in 1999. J. Environ. Monitor. 6 (4), 305-312. [IF = 1.989; MNiSW = 20; CIT = 15] link
  • Horii Y., Falandysz J., Hanari N., Rostkowski P., Puzyn T., Okada M., Amano K., Naya T., Taniyasu S., Yamashita Y., (2004): Concentrations and fluxes of chloronaphthalenes sediments from the Lake Kitaura in Japan in recent 15 centuries. J. Environ. Sci. Health. A 39 (3), 587-609. [IF = 1.002; MNiSW = 15; CIT = 15] link
  • Hanari N., Horii Y., Taniyasu S., Falandysz J., Bochentin I., Orlikowska A., Puzyn T., Yamashita N., (2004): Isomer specific analysis of polychlorinated naphtalenes in pine trees (Pinus thunbergi Parl.) and (Pinus densiflora Sieb. et Zucc) needles around Tokyo Bay, Japan. Pol. J. Environ. Std. 13 (2), 139-151. [IF = 0.963; MNiSW = 10; CIT = 12] link
  • Falandysz J., Puzyn T. (2004): Computational prediction of 7-ethoxyresorufin-O-diethylase (EROD) and luciferase (luc) inducing potency for 75 congeners of chloronaphthalene. J. Environ. Sci. Health. A 39 (6), 1505-1523. [IF = 1.002; MNiSW = 15; CIT = 15] link
Publications 2003
  • Falandysz J., Brzostowski A., Kawano M., Kannan K., Puzyn T., Lipka K. (2003): Concentrations of mercury in wild growing higher fungi and underlying substrate near Lake Wdzydze, Poland. Water Air Soil Pollut. 148 (1-4), 127-137 [IF = 1.398; MNiSW = 24; CIT = 2] link
  • Falandysz J., Lipka K., Kawano M., Brzostowski A., Dadej M., Jędrusiak A., Puzyn T. (2003): Mercury content and its bioconcentration factors in wild mushrooms at Łukta and Mor±g, Northeastern Poland. J. Agric. Food Chem. 51 (9), 2832-2836. [IF = 2.562; MNiSW = 24; CIT = 10] link
  • Falandysz J., Wyrzykowska B., Strandberg L., Strandberg B., Orlikowska A., Puzyn T., Bergqvist P.-A., Rappe C. (2003): Polychlorinated biphenyls (PCBs) in black cormorants breeding at the coast of the Gulf of Gdańsk, Baltic Sea. Fres. Environ. Bul. 12 (2), 127-142. [IF = 0.463; MNiSW = 10; CIT = 1]
  • Puzyn T., Falandysz J. (2003): Prediction of log KOA, TC and PLfor 281 chlorosubstituted pyrenes, as the key parameters in the environmental transport and fate of these compounds. J. Environ. Health A 38 (9), 1761-1780 [IF = 1.002; MNiSW = 15; CIT = 5] link
Publications 2002
  • Falandysz J., Wyrzykowska B., Strandberg L., Puzyn T., Strandberg B., Rappe C. (2002): Multivariate analysis of the bioaccumulation of polychlorinated biphenyls (PCBs) in the marine pelagic food web from the southern part of the Baltic Sea, Poland. J. Environ. Monitor. 4 (6), 929-941. [IF = 1.898; MNiSW = 20; CIT = 9] link
  • Falandysz J., Wyrzykowska B., Puzyn T., Strandberg B., Rappe C. (2002): Polychlorinated biphenyls (PCBs) and their congener-specific accumulation in edible fish from the Gulf of Gdańsk, Baltic Sea. Food Add. Contam. 19 (8), 779-795. [IF = 1.810; MNiSW = 24; CIT = 18] link
Publications 2001
  • Falandysz J., Puzyn T., Szymanowska B., Kawano M., Markuszewski M., Kaliszan R., Skurski P., Błażejowski J. (2001): Thermodynamic and phisico-chemical descriptors of chloronaphtalenes: an an attempt to select features explaining environmental behaviour and specific toxic effects of these compounds. Pol. J. Environ. Std. 10 (4), 217-235. [IF = 0.353; MNiSW = 10; CIT = 12] link
  • Falandysz J., Strandberg L., Puzyn T., Gucia M., Rappe C. (2001): Chlorinated cyclodiene pesticide residues in blue mussel, crab and fish in the Gulf of Gdańsk, Baltic Sea. Environ. Sci. Technol. 35 (21), 4163-4169. [IF = 4.458; MNiSW = 24; CIT = 17] link